首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   9篇
  国内免费   2篇
测绘学   2篇
大气科学   17篇
地球物理   43篇
地质学   75篇
海洋学   11篇
天文学   39篇
综合类   1篇
自然地理   19篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   7篇
  2018年   9篇
  2017年   8篇
  2016年   8篇
  2015年   6篇
  2014年   7篇
  2013年   10篇
  2012年   10篇
  2011年   15篇
  2010年   7篇
  2009年   13篇
  2008年   12篇
  2007年   11篇
  2006年   10篇
  2005年   11篇
  2004年   6篇
  2003年   10篇
  2002年   6篇
  2001年   3篇
  2000年   6篇
  1999年   1篇
  1998年   7篇
  1997年   2篇
  1996年   4篇
  1992年   2篇
  1988年   1篇
  1985年   1篇
  1980年   2篇
排序方式: 共有207条查询结果,搜索用时 484 毫秒
201.
The electrical conductivities of aqueous solutions of Li2SO4 and K2SO4 have been measured at 523-673 K at 20-29 MPa in dilute solutions for molalities up to 2 × 10−2 mol kg−1. These conductivities have been fitted to the conductance equation of Turq, Blum, Bernard, and Kunz with a consensus mixing rule and mean spherical approximation activity coefficients. In the temperature interval 523-653 K, where the dielectric constant, ε, is greater than 14, the electrical conductance data can be fitted by a solution model which includes ion association to form , , and , where M is Li or K. The adjustable parameters of this model are the first and second dissociation constants of the M2SO4. For the 673 K and 300 kg m−3 state point where the Coulomb interactions are the strongest (dielectric constant, ε = 5), models with more extensive association give good fits to the data. In the case of the Li2SO4 model, including the multi-ion associate, , gave an extremely good fit to the conductance data.  相似文献   
202.
The Bureya orogen is a special object among the geodynamic factors determining the high seismicity of the Lower Amur region. Its location and deep structure are studied on the basis of comprehensive geophysical and tectonic data. This orogen is a low-density lithospheric domain expressed by an intensive negative gravity anomaly and Moho sunken down to 40 km depth. Within the limits of this lithospheric structure, contemporary uplifting takes place to form a meridional dome peaking at more than 2000 m altitude. The position of the orogen in the regional structure gives us grounds to think that the Bureya orogen formed in the Paleogene, at the finishing stage of tectonic block movement along the Pacific margin represented by the NE-trending strike-slip faults of the Tang Lu Fault Zone. Compression was concentrated at the triple junction between the Central Asian, Mongolian–Okhotian, and Sikhote Alin tectonic belts. The meridional orientation of the Bureya orogen is associated with the parallel elongated Cenozoic depressions in the region. The united morphotectonic system may have formed resulting from lithospheric folding under horizontal shortening in the Paleocene–Eocene. The wavelength of the Lower Amurian fold system is 250 km, which is consistent with the theoretical estimates and examples of lithospheric folds in other regions. The contemporary activation of the Bureya orogen began in the Miocene, under the effect of the Amurian Plate front moving in the northeastern direction. As a result of shortening, the meridional cluster of weak (M ≥ 2.0) earthquakes formed along the western boundary of the orogenic dome. The most intensive deformations caused another type of seismicity associated with the activation-related uplift of the mentioned orogen. As a result, the so-called Bureya seismic zone formed above the apex of the dome, and it is here that the strongest regional earthquakes (M ≥ 4.5) occur.  相似文献   
203.
River channel patterns are thought to form a morphological continuum. This continuum is two-dimensional, defined by plan features of which there are three (straight, meandering, branching), and structural levels of fluvial relief of which there are also three (floodplain, flood channel, low-water channel). Combinations of these three categories define the diversity of patterns. One of the most important factors in channel development is stream power, defined by water discharge and river slope. The greater the stream power, the stronger the branching tendency, but threshold values of stream power are different for the three different hierarchical levels of channel relief. The critical stream power values and hydrological regime together define the channel pattern, and analysis of the pattern type can be undertaken using effective discharge curves. © 1998 John Wiley & Sons, Ltd.  相似文献   
204.
The Selenga River is the main artery feeding Lake Baikal. It has a catchment of ~450000 km² in the boundary region between Northern Mongolia and Southern Siberia. Climate, land use and dynamic socioeconomic changes go along with rising water abstractions and contaminant loads originating from mining sites and urban wastewater. In the future, these pressures might have negative impacts on the ecosystems of Lake Baikal and the Selenga River Delta, which is an important wetland region in itself and forms the last geobiochemical barrier before the Selenga drains into Lake Baikal. The following study aims to assess current trends in hydrology and water quality in the Selenga-Baikal basin, identify their drivers and to set up models (WaterGAP3 framework and ECOMAG) for the prediction of future changes. Of particular relevance for hydrological and water quality changes in the recent past were climate and land use trends as well as contaminant influx from mining areas and urban settlements. In the near future, additional hydrological modifications due to the construction of dams and abstractions/water diversions from the Selenga’s Mongolian tributaries could lead to additional alterations.  相似文献   
205.
Stochastic Environmental Research and Risk Assessment - It is the purpose of this short communication to analyze the possible caveats in the statistical interpretation of collected data,...  相似文献   
206.
Borehole guided waves that are excited by explosive sources outside of the borehole are important for interpreting borehole seismic surveys and for rock property inversion workflows. Borehole seismograms are typically modelled using numerical methods of wave propagation. In order to benchmark such numerical algorithms and partially to interpret the results of modelling, an analytical methodology is presented here to compute synthetic seismograms. The specific setup is a wavefield emanating from a monopole point source embedded within a homogeneous elastic medium that interacts with a fluid‐filled borehole and a free surface. The methodology assumes that the wavelength of the seismic signal is much larger than the borehole radius. In this paper, it is supposed that there is no poroelastic coupling between the formation and the borehole. The total wavefield solution consists of P, PP, and PS body waves; the surface Rayleigh wave; and the low‐frequency guided Stoneley wave (often referred as the tube wave) within the borehole. In its turn, the tube wave consists of the partial responses generated by the incident P‐wave and the reflected PP and PS body waves at the borehole mouth and by the Rayleigh wave, as well as the Stoneley wave eigenmode. The Mach tube wave, which is a conic tube wave, additionally appears in the Mach cone in a slow formation with the tube‐wave velocity greater than the shear one. The conditions of appearance of the Mach wave in a slow formation are formulated. It is shown that the amplitude of the Mach tube wave strongly depends on Poisson's ratio of the slow surrounding formation. The amplitude of the Mach tube wave exponentially decreases when the source depth grows for weakly compressible elastic media with Poisson's ratio close to 0.5 (i.e., saturated clays and saturated clay soils). Asymptotic expressions are also provided to compute the wavefield amplitudes for different combinations of source depth and source‐well offset. These expressions allow an approximate solution of the wavefield to be computed much faster (within several seconds) than directly computing the implicit integrals arising from the analytical formulation.  相似文献   
207.
New data were obtained for the Chulym River basin in the southeastern part of the West Siberian Plain, one of the understudied parts of Siberia in terms of age and composition of carbon and nitrogen stable isotopes for Late Pleistocene megafauna. The 14C dates from the Sergeevo outcrop, the most complete section of Late Quaternary deposits in the region, are mostly greater than ~30 550 bp. Other localities yielded 14C values in the range from >44 500 to ~19 300 bp. The finite date of ~42 270 bp for the Khozarian steppe elephant (Mammuthus trogontherii chosaricus) from Asino is intriguing because previously it was not detected in the Late Pleistocene of Siberia after the last interglacial (Marine Isotope Stage 5e), ~115 000–130 000 years ago. Stable isotope data show both similarities and differences compared to the pre-Last Glacial Maximum megafaunal species in other parts of Siberia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号